Fuente: News
Expuesto el: jueves, 26 de abril de 2012 19:00
Autor: News
Asunto: New insight: Hardly any genes are activated in embryonic stem cells
In naive embryonic stem cells not all genes are active, as previously thought. Rather these genes are 'paused', ready for action if needed. These findings were made at the Radboud University Nijmegen (the Netherlands) using modern ES cell culturing techniques. The top journal Cell publishes these results on April 27th. Embryonic stem cells (ES cells) are special and valuable cells. ES cells are isolated from very early embryonic stages and are a model system for embryonic development. ES cells are able to divide and multiply continuously ('self-renewal') and have the capacity to specialize ('pluripotency'). They are able to differentiate into any specific cell-type of the body, including cells for organs, muscle, bone and blood. Due to these unique properties, expectations for the use of ES cells in the clinic are high, but ES cells therapies have not yet been developed to full potential. Modern ES cell culturing techniques reveal new insights Using this new method, dr Hendrik Marks, molecular biologist at the Nijmegen Centre for Molecular Life Sciences (NCMLS) of the Radboud University Nijmegen, the Netherlands, discovered to his surprise that in naive mouse embryonic stem cells the oncogene c-myc, considered to be an essential gene for cell division and proliferation, was almost absent; there were less genes active than expected; there is hardly any inhibition on inactive genes; a lot of genes seem to be 'on hold'. From this state, the ES cells can efficiently specialize. The Opposite: Genes are selectively turned on, not off ‘We now see the opposite: Genes are selectively turned on. However, the epigenome, the proteins present on the genome that instruct how, when and where genes should be activated, is already prepared for action. RNA Polymerase, the enzyme that transcribes the genes and thus produces the RNA, is prepared at the start of the genes. It only needs a signal to start doing its job. Moreover, the levels of the inhibiting H3K27me3 on the genes are low. That saves an additional step for the activation of the gene: the inhibiting methylgroup does not have to be removed from the histones before activation of the genes. Epigenetic Experts Marks et al., The Transcriptional and Epigenomic Foundations of Ground State Pluripotency, Cell, April 27th, 2012 |